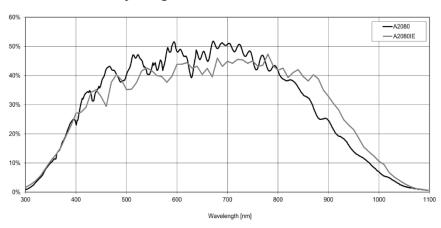
SpotOptics s.r.l. – leaders in accurate metrology

OMI-UV to NIR

VERSATILE WAVEFRONT SENSOR


- Accurate metrology in single pass
- Optical elements, lasers and laser diodes
- Test any focal length and diameter (with accessories)
- Large dynamic range
- For R&D and production
- Optimized for UV->NIR wavelength ranges (300-1100nm)
- High sampling

TECHNICAL SPECIFICATIONS (GENERAL)	
HARDWARE	
Test	Optical elements, lasers and laser diodes
Power of laser diode that can be tested	Few mW. Higher powers require a power reduction system (available)
No of spots (see cameras below)	50x50 (UV-VIS-NIR) for a pupil of ϕ =10mm. 75x75 spots for a pupil of 15mm
Diameter and focal length of standard lenslet arrays	 φ=0.2mm, f=22mm- for UV-Vis region from 300-750nm φ=0.2mm, f=11mm - for NIR region - from 750-1100nm
SOFTWARE	
Software (control and analysis)	Sensoft for 64bit Win 8.1, Win 10, Win 11
RMS repeatability of Zernike coefficients	<2nm rms (λ/800 @ 1050nm)
RMS repeatability of modal wavefront measurements	< λ/100
Accuracy and dynamic range	$\lambda/20$ - $\lambda/100$ (calibration dependent), -±50 λ
CAMERAS	
Detector, wavelength range and cooling	CMOS (UV-VIS-NIR). Uncooled. See QE curves below
Camera 1: Resolution, pixel size, chip size	1024 x 1024 pixels, 10.6 μm, 10.9 x 10.9 mm ²
Camera 2: Resolution, pixel size, chip size	2048 x 2048 pixels, 8μm, 16 x 16 mm ²
Connection, A/D convertor bits	Gigabit Ethernet, 12-bits
Camera 1: Acquisition speed	75Hz
Camera 2: Acquisition speed	15Hz
Triggering	Yes
Exposure time (max)	~800msec
ACCESSORIES	
Light sources, beam expanders and compressors	High quality LD with lens at test wavelength, beam expanders/compressors

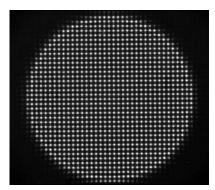
OMI UV-VIS-NIR (from 300nm-1100nm)

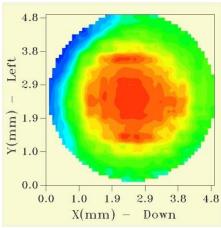
Quantum Efficiency Image Sensor

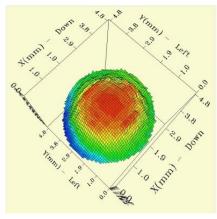
Quantum efficiency curve of CMOS

Other details

Resolution: 1024 x 1024 pixels
Pixel size: 10.6 μm x 10.6 μm
Chip size: 10.9 mm x 10.9 mm


Image rate: 75Hz (full resolution)
 Saturation: ≥900,000e^{-,} SNR: 200


Max. exp. Time: ~800 ms
Connection: Gigabit Ethernet

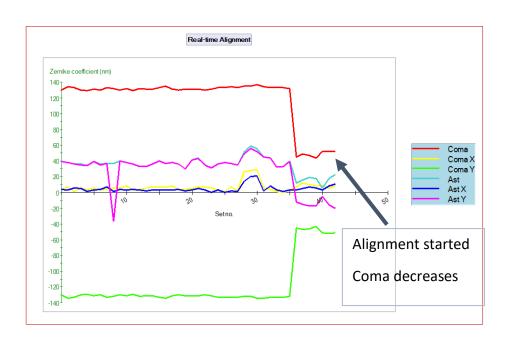

OMI UV-VIS-NIR

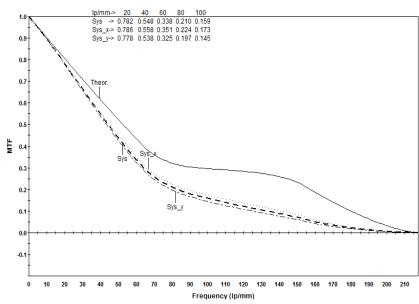
Other details

- Resolution: 50x50 spots (max)
- Lenslet pitch and focal length (UV and VIS): 0.2mm, 22mm
- Lenslet pitch and focal length (NIR): 0.2mm, 11mm
- Calibration unit for parallel light: Static or motorized highquality collimator with LD/LED at test wavelength
- Motor step: 2.5μm

SENSOFT: THE SOFTWARE

Sensoft: The modular software package

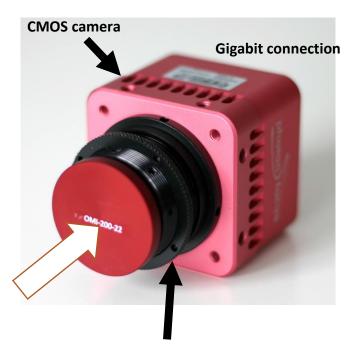

- Fully controls the hardware of OMI
- Performs the Shack-Hartmann (SH) analysis
- Computes Zernike coefficients, diagnostics (alignment and correct focal plane),
 zonal and modal wavefront, MTF, spot diagram
- Has a Loop mode for on-line adjustment of optical systems


OMI in your production line:

- OMI with its own PC can easily be adapted to the production line
- It can work in a closed-loop with the PC of the manufacturing machine
- A software module defines the IP communication protocol and transfers the results
 between the PCs in the Local Area Network

ON-LINE ALIGNMENT IN A FAST LOOP

MTF MEASUREMENTS



- The alignment of complex optical systems becomes easy by monitoring coma and astigmatism in a continuous loop
- The individual (x, y) components of coma and astigmatism, as well as the total coefficients are displayed
- The optimization can be done for one component at a time, as the software can display one component of interest

MTF after subtracting the contributions of tilt and defocus present in the data.

OMI with UV-VIS CAMERA

Calibration light source: LD/LED at different wavelengths (parallel or pinhole for test with collimator)

Input test beam

OMI

- fl=22mm, ϕ = 0.2mm for UV-Vis (300-750nm)
- fl=11mm, ϕ = 0.2mm for NIR (750-1100nm)
- Max. Resolution 50x50 spots

PHYSICAL

Camera:

CMOS, Gigabit Ethernet, 12-bits (300-1100nm)

Dimensions

120 (L) x 60 (W) x 60 (H) mm

Weight: ~500gm

KEY FEATURES

Measurement technique

Shack-Hartmann wavefront sensor

Test in parallel light or at the lens focus in single pass

Parallel light (with a calibration unit)

At the focus of the lens (with pinhole calibration unit)

Light sources with different wavelength available

Calibration units available

High-quality parallel light source (motorized or manual) Pinhole calibration unit

Accessories

Light sources and beam expanders/compressors. Collimators

SOFTWARE

- Full waterfront analysis: Zernikes, zonal and modal WF, Spot diagram, MTF, EE, PSF, M²
- Easy alignment of lens group via software: graphical indication for correction using coma and astigmatism
- Stabilization of lasers: graphical indication of focusing of laser beam